Skip to main content
UF Institute of Food and Agricultural Sciences logo
Give      University of Florida
Resources
    Toggle Search Form
    GIVE UNIVERSITY OF FLORIDA
    • HOME
    • General Info
          • General Information
          • About Us
          • Job Announcements
          • Florida Medical Entomology Group
          • Locations
          • Natural Habitats @ FMEL
          • Maps
          • Mosquito ID Course
          • Advanced Mosquito Identification and Certification
          • Fall Adv Mosquito ID and Certification for FMC
          • Introduction Mosquito ID Course (None at this time)
    • People
          • Faculty
          • Staff
          • Postdoctoral Associates, Scientists, Technicians
          • Students
    • Publications
          • Print Publications
          • EDIS FMEL Publications
    • Mosquito Guide
          • Quick Genera Keys
          • Basic Mosquito Anatomy
          • Identification Tables
          • Genera & Species
          • Reference and Acknowledgements
    • News & Highlights
          • FMEL - Highlights
          • FMEL - In The Media
          • FMEL Research Blogs
    • Mosquito Control
          • Research
          • FMEL Research Areas
          • Insecticide Resistance In Florida Mosquito Vectors
          • Mosquito Control
          • Florida Mosquito Control Directory - Map
          • Florida Mosquito Control by Counties
          • Mosquito Control White Papers
          • Florida Mosquito Control Association
    • Events

    Florida Medical Entomology Laboratory

    Florida Medical Entomology Laboratory

    1. Alto, B.W., Wiggins, K., Eastmond, B., Velez, D., Lounibos, L.P., and Lord, C.C. (2017). Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Neglected Tropical Diseases, 11(7), e0005724. https://doi.org/10.1371/journal.pntd.0005724
    2. Alto, B.W., Wiggins, K., Eastmond, B., Ortiz, S., Zirbel, K., and Lounibos, L.P. (2017). Diurnal temperature range and chikungunya virus infection in invasive mosquito vectors. Journal of Medical Entomology, doi: 10.1093/jme/tjx182.
    3. Benedict, M.Q., Burt, A., Capurro, M. L., De Barro, P., Handler, A. M., Hayes, K. R., Marshall, J., Tabachnick, W. J., and Adelman, Z. N. (2017). Recommendations for laboratory containment and management of gene drive systems in arthropods. Vector Borne Zoonotic Diseases, doi: 10.1089/vbz.2017.2121. PMID: 29040058.
    4. Bisset Lazcano, J.A., Rodríguez Coto, M.M., Piedra O’Farril, L.A., Rey, J.R.,  Marquetti Fernández, M.d C., and Gutiérrez Bugallo. G. (2017).  Nivel de resistencia a tres formulaciones de insecticidas en Aedes aegypti de la región occidental de Cuba (Resistance of western Cuba Aedes aegypti mosquitoes to three insecticide formulations). Rev. Cubana de Medicina Tropical 69, August 2017 -  http://revmedtropical.sld.cu/index.php/medtropical/article/view/239/153
    5. Blosser, E.M., Lord, C.C., Stenn, T., Acevedo, C., Hassan, H K., Reeves, L E., Unnasch, T.R., and Burkett-Cadena, N.D. (2017). Environmental Drivers of Seasonal Patterns of Host Utilization by Culiseta melanura (Diptera: Culicidae) in Florida. Journal of Medical Entomology, 54(5), 1365-1374. https://doi.org/10.1093/jme/tjx140
    6. Blosser, E.M., and Burkett-Cadena, N D. (2017). Oviposition Strategies of Florida Culex (Melanoconion) Mosquitoes. Journal of Medical Entomology, Jul 1;54(4):812-820. tjx052. https://doi.org/10.1093/jme/tjx052
    7. Burkett-Cadena, N.D., and Blosser, E.M. (2017). Aedeomyia squamipennis (Diptera: Culicidae) in Florida, USA, a New State and Country Record. Journal of Medical Entomology, 54(3), 788-792. https://doi.org/10.1093/jme/tjw226
    8. Burkett-Cadena, N.D., & Vittor, A.Y. (2017). Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology. BAAE-51065. https://doi.org/10.1016/j.baae.2017.09.012
    9. Duguma, D., Hall, M.W., Smartt, C.T., and Neufeld, J.D. (2017). ). Temporal variations of microbiota associated with the immature stages of two Florida Culex mosquito vectors. Microbial Ecology,74 (4), 979–989. https://doi.org/10.1007/s00248-017-0988-9
    10. Duguma, D., Hall, M.W., Smartt, C.T., and Neufeld, J.D. (2017). Effects of organic amendments on Microbiota Associated with the Culex nigripalpus mosquito vector of the Saint Louis encephalitis and West Nile viruses. mSphere, 2(1); doi:10.1128/mSphere.00387-16.
    11. Duguma, D., Kaufman, M. G., and Domingos Simas, A. B. (2017). Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae). Ecology and Evolution, 7 (10), 3507-3519. https://doi.org/10.1002/ece3.2947
    12. Duguma, D., Ortiz, S.L., Lin, Y., Wilson, P.C., and Walton, W.E. (2017). Effects of a larval mosquito biopesticide and Culex larvae on a freshwater nanophytoplankton (Selenastrum capricornatum) under axenic conditions. Journal of Vector Ecology, 42 (1), 51-59. https://doi.org/10.1111/jvec.12239
    13. Glushakova, L.G., Alto, B.W., Kim, M.S., Bradley, A., Yaren, O., and Benner, S.A. (2017). Detection of chikungunya viral RNA in mosquito bodies on cationic (Q) paper based on innovations in synthetic biology. Journal of Virological Methods, 246, 104-111. https://doi.org/10.1016/j.jviromet.2017.04.013
    14. Honorio, N.A., Carrasquilla, M.C., Bargielowski, I.E., Nishimura, N., Swan, T., and Lounibos, L.P. (2017). Male origin determines satyrization potential of Aedes aegypti by invasive Aedes albopictus. Biological Invasions DOI 10.1007/s10530-017-1565-3.
    15. Hoyer, I.J., Blosser, E M., Acevedo, C., Thompson, A.C., Reeves, L.E., and Burkett-Cadena, N. D. (2017). Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biology Letters, 13(10), 20170353. https://doi.org/10.1098/rsbl.2017.0353
    16. Oforka L.C., Adeleke M.A., Anikwe J.C., Hardy N.B., Mathias D.K., Makanjuola W.A., and Fadamiro H.Y. (2017). Poor genetic differentiation but clear cytoform divergence among cryptic species in Simulium damnosum complex (Diptera: Simuliidae). Systematic Entomology, DOI: 10.1111/syen.12256.
    17. Pless, E., Gloria-Soria, A., Evans, B.R., Kramer, V., Bolling, B.G., Tabachnick, W.J., and Powell, J.R. (2017). Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Neglected Tropical Diseases, 11(8), e0005718. doi: 10.1371/journal.pntd.0005718. PMID: 28796789.
    18. Rey, J.R. (2017) Vaccine Development Clinical Trials.  Pp. 33-35 In: NIH/NIAID Exploring Opportunities for Arbovirus Research Collaboration - Conference Summary.  Washington, D.C. and Havana, Cuba. 47pp.
    19. Riles M.T, Smith J.P., Burkett-Cadena N, Connelly C.R. , Morse Jr. G., and Byrd B.D.  (2017).   First record of Aedes japonicus in Florida.  Journal of the American Mosquito Control Association 33, 340-344. https://doi.org/10.2987/17-6696.1
    20. Rodríguez, M.M, Crespo A., Hurtado,D.  Fuentes, I. Rey, J.R., and Bisset, J.A. (2017).  Diagnostic doses of insecticides for adult Aedes aegypti  to assess insecticide resistance in Cuba.  Journal of the American Mosquito Control Association 33,142-144. https://doi.org/10.2987/16-6593.1
    21. Smartt, C.T., Shin, D., and Alto, B.W. (2017). Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Memórias do Instituto Oswaldo Cruz, 112(12), 829-837. https://doi.org/10.1590/0074-02760170182
    22. Smartt C.T., Stenn T.M.S., Chen T.Y., Teixeira Mda. G., Queiroz E, Santos L.S.D., Queiroz G.A.N., Souza K.R., Silva L.K., Shin D., and Tabachnick W.J. (2017), Evidence of Zika virus RNA fragments in Aedes albopictus field collected eggs from Camaçari, Bahia, Brazil. J. Med Entomol. 54 (4): 1085-1087. doi: 10.1093/jme/tjx058.
    23. Yaren, O., Alto, B.W., Bradley, K.M., Yang, Z., and Benner, S.A. (2017). Point of sampling detection of Zika virus within a multiplexed kit capable of detecting dengue and chikungunya. BMC Infectious Diseases, 17, 293 doi:10.1186/s12879-017-2382-0.
    24. Zhao, L., Alto, B.W., and Duguma, D. (2017). Transcriptional profile for detoxification enzymes AeaGGT1 and AaeGGT2 from Aedes aegypti (Diptera: Culicidae) in response to larvicides. Journal of Medical Entomology, 54(4), 878-887. https://doi.org/10.1093/jme/tjw244
    25. Zhao, L., Alto, B.W., Smartt, C.T., and Shin, D. (2017). Transcription profiling for defensins of Aedes aegypti (Diptera: Culicidae) during development and in response to infection with chikungunya and Zika viruses.  Journal of Medical Entomology, doi: 10.1093/jme/tjx174.
    University of Florida Logo
    Contact

    Feedback
    Florida Medical Entomology Laboratory
    200 9th St SE, Vero Beach, FL. 32962
    (772) 778-7200

    Land Grant Mission
    • Teaching
    • Research
    • Extension
    Information
    • Ask IFAS (EDIS)
    • UF/IFAS Experts
    • UF/IFAS Blogs
    • UF/IFAS Bookstore
    Policy
    • Accessible UF
    • EEO Statement
    • IFAS Web Policy
    • SSN & UF Privacy
    • Analytics (Google Privacy)

    © 2025 University of Florida, IFAS Last Modified:Tue, 28 May 2024 13:45:32 EDT